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Fibonacci relations. 
On the computation of some counting polynomials 
of very large graphs 

S. EI-Basil 
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A definition of a set of Fibonacci graphs is introduced which allows construc- 
tion of several counting polynomials of very large graphs quite easily using 
a pencil-and-a-paper approach. These polynomials include matching, sextet, 
independence, Aihara and Hosoya polynomials. Certain combinatorial 
properties of Kekul6 counts of benzenoid hydrocarbons are given. A relation 
to a new topological function that counts the cardinality of graph topology 
[23] is given. 
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I. Introduction 

Application of graph theoretical methods to the theory of aromaticity [1] led to 
the introduction of several related counting polynomials of chemical and mathe- 
matical importance. These polynomials have the general form given by 

P(G; X)= ~ O(G, k).f(X, k) (1) 
k - -O  

where O(G, k) represents a count of k "nonadjacent structures", m is maximum 
value of k and f(X, k) is some function of X at a particular value of k. The 
O(G, k) function might assume one of the following definitions 

~p(G, k) 
O(O, k) = ~r(B, k) (2) 

(o(O,k) 

Dedicated to Professor Oskar E. Polansky for his enthusiastic support, participation and promotion 
of chemical graph theory. 
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where p(G, k) is a k number  of  ways in which K2 subgraphs can cover G so that 
no two of them are joint. ~ It contributes to the terms of the acyclic polynomial 
[2] r(B, k) is called a kth resonant sextet number  of  the benzenoid graph B and 
is equal to the number  of  ways in which k mutually resonant but disjoint aromatic 
sextets are chosen from B. These numbers are the coefficients of  X k in the sextet 
polynomial  [4]. They also enter into the structure of  the Aihara polynomial [5]. 
Finally o(G, k) is the number  of  selections of  k independent vertices in G [6]. 
They form the coefficients of  the independence polynomial [6]. The importance 
of these polynomials [7] led people to consider methods to facilitate their compu- 
tation [8]. Usually a recursion formula is complemented with a computer  program 
[9]. Even so the number  of  nonadjacent structures proliferates factorially with 
large graphs which limits the usefulness of  computers [10]. In this paper  we apply 
a very simple pencil-and-a-paper approach for obtaining O(G, k)'s of  potentially 
very large graphs via repeated use of  Fibonacci relation [11]. 

2. On a suggested definition of a set of  Fibonacci graphs, G s 

We define {G(, G~,. . . ,  Gf}, 3 <-n <-~ as a set of  Fibonacci graphs if either of 
the following conditions hold: 

1) Thesets { G f - G { ,  G f - G { , . . . ,  G~-G{} ;  { G3f- G2,Y Gf -G~,  ..., G,f - G2},f" 
{ o ~ -  ~3 s, c ~ -  o L . . . ,  Q - o ( } , . . . ,  {G(+, - o{ ,  0{+2- O{ . . . .  , o ~ -  G(}, 
i = 1, 2 , . . . ,  n - 3  correspond to the paths {LI ,  L 2 , . . . ,  Lj}, Lk is a path contain- 
ing k vertices, where G,-  Gs is a graph resulting when G, is pruned out of  G r. 

To illustrate this condition we consider the trees shown in Fig. 1. 

I I  I l o  I l l  I l I  o l l l I  
T1 T2 T3 T4 TS 

11I, lo l I l I I  l l l l l o  
T6 T7 T8 

llIllIIII IlollIllII 
T 9 1-10 Tll 

Fig. 1. Triads of Fibonacci trees 

1 Hosoya [3] calls p(G, k)'s nonadjacent numbers. 
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Table 1. Triads of Fibonacci 
p(0), p ( l ) , . . . ,  p(m), 0 a 

trees (in braces). The numbers are 

201 

T t 1 ,3~ ,  0 

T 2 1,4,2,0 
',[, 

1 ,5~ ,  1,0 

;34~ 1 ,6 ,8 ,2 ,0  

1 

1,9, 2 ~ . ~ ,  9, 1,0 

1, 10, 32, 38, 16, 2, 0 

( T 9 ) 1,11,41 63 41 11 1,0 

~T," o 1, 12, 50, 8[,8, 66, 2~2,  0 

[.Tll 1, 13,61, 129, 129,61, 13, 1,0 

p(k) b 
k = O  

a These numbers are also r(B, k)'s of the benzenoid graphs shown in Fig. 3. They 
are also 0(G, k)'s of the line graphs, L(T)'s shown in Fig. 5 (see text). 
b These values are the Kekul6 counts of the benzenoid systems of Fig. 3. 

We observe that {Tl, Ta, T3} define a set of Fibonacci trees: ( {Tz-  T1, T3- T1} = 
{L~, L2}). However {7"i, 7"2, T3, T4} is not a set of Fibonacci trees because 
while { T2-  7"1, T3-  T1, T4-  TI} ={Ll,  L2, L3}yet { T3-  7"2, T4- T:} ={L~, (LI" L1)} 
where (LI-L~) is a disconnected graph composed of two vertices 2. One might 
factor out the following triads of Fibonacci trees (See Table 1): {7"1, 7"2, T3}; 
{T3, T4, Ts}, {Ts, T6, T7}; {T7, Ts, Tg}, {T9, 7"10, T~1}. 

2) Let g be a subgraph in a set of { o f } ' s .  Then {Gy-g, G f - g , . . . ,  G~-g} 
correspond to the cycles {CmCm+,,..., Q}. E.g. in the set 

...}, g = ~ : D  , leading to the pruned set {C3, C4, C5, . . . } .  One observes that 

the sets {Lo, L~, L2 , . . . }  and {C3, C4, C5, . . . }  define graphical representation of 
Fibonacci and Lucas sequences [12] respectively. In a set of Fibonacci graphs 
the following recursion exists: 

O(G f ,  k) + O(G~+,, k + 1) = O(G~+2, k + 1) (3) 

where G~ is a Fibonacci graph containing m vertices. 

a Subtraction must be done by pruning the tree from left to right. 
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3. Results 

Tables  1-5 illustrate the appl ica t ion of  Eq. (3) to a set of  Gs's.  Th roughou t  the 
tables p(G, k)= p(k)= S~, = n u m b e r  o f  acyclic Sachs graphs  [13] on 2k vertices. 

Table 2. Nonadjacent numbers, p(k)'s, of some annulenes 

C ~ )  The numbers are, from left to right, 
J 

p(O), p(l), p(2) . . . .  p(m), 0 

J 

7 

l 
11 

l 

2 1,6,6,0 

3 1,7, 11,2,0 

4 1,8, 17,8,0 "-a "--, 
5 1,9,24, 19, 2,0 

6 1,10,32,k>0,0 
1, 11,41,60,29,2,0 

1,15,87,246,350,231,55,2,0 

Table 3. Nonadjacent numbers o f ~ ] ) ~  O ~  

numbers are from left to right p(0), p(1), p(~2),..., p(m), 0 

3 

4 

5 

l 
lO 

l 
z 

1,8,17,6,0 
",,a 

1,9,24, 18,2,0 

1, 10,32, 35, 8,0 

1, 11,41, 59, 26, 2,0 

1, 12, 51,91, 51, 10,0 

1,17,116,406,761,731,332,62,2,0 

The 
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Table 4, Nonadjacent numbers of some spiro 

compounds ~ ) j  . The numbers, from 

6 - - - - - 6  
left to right, are p(0), p(1),. . . ,  p(m), 0 

1 1,7~0, 2, 0 

2 1 ,8 ,7 ,10 ,0  

3 1,9, 24L.~, 2, 0 

4 1, 10, 32, ~7, 12, 0 

5 1, 11,41, 61,32, ~,0 

6 I, 12, 51,93, 69, 14, 0 

Table 5. Nonadjacent numbers of ~ / / ~ ) j  . 

O "  
left to right p(0), p(1),. . . ,  p(m), 0 

The numbers are from 

0 1,6,3,0 

1 1 ,7 ,8 ,~  
2 1,8,14,3,0 

3 1,9 21 11 0 

5 1, l,7,46, 7,0 

1 
11 

i 

1, 17, 113,375, 654, 574, 217, 23, 0 
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4. More involved applications of Eq. 3 

We give two examples which illustrate the more subtle points of the approach. 

4. I. Calculation of nonadjacent numbers of G(6, I 1) 

G(6.tl) 

G(6, 11) is a large annulene on 19 vertices. It represents an example of the 
explosive growth of Sachs graphs [10]. One might compute its nonadjacent 
numbers most easily by three sequences of what might be called Fibonacci growth 
of graphs. These sequences are graphed below: 

( ~ ( ~ G(6.11) 

G(1.61 G(2,6) 

4; 
<;> 

G{1.11 G(1,2) 

Sequences (1) and (2) involve six Fibonacci growths while sequence (3) involves 
nine such additions. Proceeding as in Table 2 we have the following p(k)'s for 
the leading members of sequence (3): 

G(1, 6 )~1 ,  10,32,36, 10,0 

G(2, 6 ) ~  1, 11,41,61,32,3,0. 

Nine applications of our recursion, Eq. 3, leads to p(k)'s of G(6, 11), these are: 
1, 20, 167, 757, 2026, 3258, 3061, 1550, 356, 25. The whole job takes about 15 
minutes with a desk calculator. (The p(k)'s of the required leading members, 
G(1, 1), G(1,2), G(2,2) are simply calculated either by inspection or using 
Heilbronner's well-known recursion [14]), thus G(6, 11) has been regressed down 
to quite very simple graphs. 

4.2. Nonadjacent numbers of G(4): 
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The problem lies in identifying Fibonacci graphs which precede G(4). These are 

+: 
g(2) @(3) 

, 6 (4 )  

The required p(k)'s might therefore be computed: 

g(2) 1, 7, 13, 7, 1,0 
\ \ \ \ \  

G(3) 1, 9, 24, 20, 4, 0 \ \ \ \ \  
G(4) 1, 10,31,33, 11, 1 

We might have obtained the p(k)'s of G(3) by identifying its Fibonacci set: 

g(1) G(2) 

Thus 

g(1) 1,6,9,3,0 

G(2) 1, 8, 18, 11, l, 0 
I 

G(3) 1, 9, 24, 20, 4, 0 

Again the p(k)'s of G(2) are obtainable by identifying it in the set: 

I L6 t + ~ GI2) 

G(1) 

where the p(k)'s are: 

L 6 1,5,6, 1,0 
\ 

G(1) 1, 7, 113, 5, o 

G(2) 1, 8, l S, 11, 1 
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g(2) 
g(1) 

L6 ~ /GI2) 

Ls ~ @(I) 

/ 
/ 

0(3) 

Fig. 2. Graphical synthesis of nonadjacent 
numbers of G(4) from L 5 

Finally G(1) is a member of {Ls, C6, G(1)}, whence 

L5 1 ,4 ,3 ,0  
\ 

C6 1 ,6 ,9 ,2 ,0  
I 

G(1) 1, 7, 13, 5, 0 

The method is illustrated in Fig. 2. 

So, all graphs, in principle, might be regressed down to very small ones and this is 
the concept of the approach. Such a concept finds analogy with Balasubramanian's 
scheme [15] of reducing secular determinants to those of his quotient trees. 

5. On Resonant Sextet numbers [4], r(B, k)'s of large Cata-Condensed 
Benzenoid hydrocarbons 

First we cite some terminology: A molecular network which is entirely composed 
of hexagons is called benzenoid. If all benzene rings in one of the Kekul~ 
structures had an aromatic sextet the hydrocarbon is called all-benzenoid. If no 
three hexagons have a common atom, the system is called Cata-condensed. If 
every hexagon of a cata-condensed system has at most two neighboring hexagons, 
it is said to be nonbranched. If there is at least one hexagon in a cata-condensed 
hydrocarbon that is surrounded by three other hexagons, it is said to be branched. 
The nonterminal hexagons in a nonbranched cata-condensed system can be 
anellated in just two ways [16], viz. 

L-mode A-mode 
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The Symbols L and A refer to linear and angular respectively. We shall adopt 
the additional convention that a branched hexagon will be assigned the symbol 
A, viz., 

A dualist [17], D(B),  of a benzenoid hydrocarbon results when its hexagons are 
replaced by vertices and then connecting adjacent vertices corresponding to rings 
which had a common edge in the benzenoid graph, B. Thus a benzenoid hydrocar- 
bon containing R rings (as well as its corresponding D(B) containing R vertices) 
might be associated with an ordered R-tuple of  L, A symbols (depending on 
modes of anellation of rings). As usual we adopt the convention that terminal 
rings be given the symbol L, we illustrate the above concepts with the following 
examples 

A A L 

L A A A 

a nonbranched all-benezoid cata-condensed system and its dualist 

O O 
L_ L 

L 

L 

A 

a branched non-all-benzenoid cata-condensed hydrocarbon and its dualist. 

6. On Gutman trees [16] 

Gutman [16], in his search for methods to facilitate computation of sextet 
polynomials of complex nonbranched cata-condensed hydrocarbons, associated 
a tree with every L, A sequence given to the rings of the hydrocarbon. He then 
proved the identity 

r(B, k)=p(T, k) (4) 

where T =  T(B), i.e. the tree corresponding to B. Not all trees, however, are 
transformable into benzenoid graphs [18]. We shall call a tree, T = T(B), a Gutman 
tree, which is simply formed by the addition of an arbitrary number of vertices 
to an arbitrary path. The details of transforming a nonbranched benzenoid graph 
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BI [32 B3 B4 
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[35 

B6 B7 88 

[39 /310 [311 

Fig. 3. Triads of Fibonacci (Benzenoid) graphs: {Bt, Bz, B3} , {/?3, B4, Bs},..., {Bg, Bio, BI 1} 

into the corresponding Gutman trees is described in Refs. [16, 19]. The trees 
shown in Fig. 1 are in fact one type of T(B)'s. They correspond to the following 
benzenoid graphs [16, 18, 19] (Bj corresponds to Tj of Fig. 1). 

Since the p(k)'s of  T1-T~t (Fig. 1) correspond to r(B, k)'s of their benzenoid 
graphs, B~- B~, we might select sets of triads of these B's whose r(B, k)'s satisfy 
recursion relation 3 and thus call them Fibonacci benzenoid graphs, Bf's. Such 
triads of Bf's are (BI, B2, n3), (B3, B4, Bs), (Bs, B6, B7), �9 �9 �9 , (B9, Blo, BII). Every 
subset satisfy the following relation: (a special form of Eq. 3) 

r(BYR, k) + r (Bf  +,, k + 1) = r(B~+2, k + 1). (5) 

Where B~ is a benzenoid Fibonacci graph containing R rings. Thus the numbers 
in Table 1 are resonant sextet numbers of B~ - B~I (of. Gutman's identity, Eq. 4). 
One observes that B~l has thirteen rings and its corresponding T(B)= T11 has 
fourteen vertices. This is already too large (for a pencil-and-a-paper method). 
However B~ might be regressed down to B~, i.e. simply phenanthrene! This is 
shown graphically in Fig. 4. 

The diagram of Fig. 4 is suggestive of an elegant way of computing the number 
of Kekul6 structures, K(B)'s. Let Kj = K(Bj), then, we observe that: K4 = K3 + K~, 
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Fig. 4. Computation of resonant sextet numbers of BII  by regression to B l (phenanthrene) via repeated 
use of Eq. (5). Numbers in parentheses are Kekul~ counts, K(B)'s 

K6 = Ks + K3 ; K8 = K7 + Ks and K~o = K9 + K7. But we know that K3 = Kl + K2; 
Ks = K3 + K4; K7 = Ks + K6; K9 = K7 + Ks and Kll ---- K9 + K lo. The two types of 
equality lead to the hierarchy of K 's  shown. This is equivalent to identifying the 
following triads of  Fibonacci (benzenoid) graphs: {B~, B2, B3} , {B3, B4, Bs} , 
{Bs, B6, B7}, {B7, B8, B9} and {Bg, Blo, Bll}. The other series being: {Bl, B3, B4}, 
{B3, B5, B6} , {Bs, B7, Bs} and {BT, B9, Bto}. This may be realised easily recognizing 
a set of benezoid graphs to be Fibonacei graphs only if their corresponding Gutman 
trees form a set of Fibonacei graphs. 

7. Line graphs of T(B)'s, L(T(B))'s 

Fig. 5 shows L(T(B))'s i.e. line graphs [19, 20] of T(B)'s shown in Fig. 1. Gutman 
[19] demonstrated that 

L( T( B)) -= C( B) = C (5) 

where C is the so called Clar graph [19]. The C graph corresponding to a 
benzenoid hydrocarbon containing R rings has R vertices: Vl, v 2 , . . . ,  VR, such 
that vi and v) of C are adjacent (connected) if and only if the corresponding 
hexagons are mutually not resonant. The numbers of Table 1 correspond to 
o(C, k)'s i.e. 

p( T~, k)= o( Ci, k) (6) 

Once we recognize sets of Fibonacci trees we have an easy method of computing 
terms of independence polynomials of Clar graphs of very large sizes. These graphs 
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C~ C 2 C 3 C~ C 5 
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C6 C7 C8 

C9 Clo C~1 

Fig. 5. Sets of Fibonacci Clar graphs. C~ corresponds to T i (Fig. l)and Bi (Fig. 3). The independence 
numbers, o(C, k)'s, are given in Table 1 

have recently been shown [6] to be very useful for computing sextet polynomials 
of complex benzenoid systems. 

8. All-benzenoid cata-condensed hydrocarbons 

This very particular class is characterised by certain properties which make the 
computation of their sextet polynomials quite easy for very large systems: (1) 
their dualists [17], D(B)'s,  contain only three types of induced subgraphs [20], 
biz. (dl)= LA, (d2)= A 2 and (d3)= AL. (2) The number of vertices of (d), the 
induced subgraph is always 2. (This is not so with non-all-benzenoids). (3) There 
is only one resonant sextet in each (d). (This property is common to other 
cata-condensed systems), and thus from the definition of resonant sextet numbers 
and sets of independent vertices we have: 

o(D(B), k) = r(B, k) (7) 

where, for all-benzoid hydrocarbons D(B) has the same adjacency as C(B) i.e. 
C(B) coincides with the corresponding inner dual [21]. Thus we may write for 
this class of benzenoid hydrocarbons: 

L-'(D(B)) = L-I(C(B))= T(B) (8) 

where, as usual, L-I(D(B)) is a graph, the line graph of which is D(B). Whence 

p( L-~)( D( B), k))= r( B, k) = o( D( B), k). (9) 

Eq. (9) holds only for nonbranched all-benzenoid systems, while for branched 
systems L I(D(B)) does not exist, because the dualist (as well as , ~ t h e  inner dual) 
of a branched cata-condensed benzenoid hydrocarbon contains ~ ,  a for- 
bidden subgraph for line graph [20]. 
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AB~ AB 2 
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AB 3 AB 4 

AB s 

Fig. 6. A set of  branched all-benzenoid, (AB), Fibonacci graphs and their dualists (embedded inside 
the hexagons).  The numbers  in Table 6 are r(AB, k)'s = o(D, k)'s 

Table 6. Resonant  sextet numbers  of  complex branched all-benzenoid hydrocar- 
bons shown in Fig. 6. The entries from left to right are r(AB, 1), 
r(AB, 2),. . . ,  r(AB, rn), O. The numbers  are also O(D, 1), 0(D, 2) , . . . ,  
O(D, m), O where AB is an all-benzenoid hydrocarbon and D its dualist (cf. 
Eqs. 10, 11). Kekul6 counts,  K ' s ,  are also given 

AB 1 1, 10. 36. 59. /.9. 24, 7, 1, 0 

\ \ \ \ \ \ \ \  
AB 2 1, 11. 45, 87. 86. 46. 1/,, 2. 0 

\ 
AB 3 1. 12, 55, 123. 1/.5, 95. 38. 9. 1, 0 

\ I \ / \ I \ / \ / \X \X \ \ \  
AB 4 1. 13, 66, 168, 232, 181, 8/*, 23, 3, 0 

I I I I / / \ \ \  
AB s 1, 1L, 78, 223. 355. 326, 179, 61. 12. 1, 

187 

292 

479 

771 

1250 ~ 

a One observes that the construction of  these resonant sextet numbers  of  AB 5 
by method of  Hosoya and Yamaguchi  [4] would require drawing 1250 x 14 = 
17 500 hexagons!  



212 S. El-Basil 

(4) Since the Gu tman  trees, T(B) 's ,  o f  a set o f  nonbranched  al l-benzenoid 
hydrocarbons ,  BR, BR+j, BR§ �9 �9 where BR contains R rings, correspond to the 
paths LR+I, LR§ LR+3, �9 �9 ..  They define a set o f  Fibonacci  trees, and whence: 

r(B f ,  k) + r ( B f + , ,  k + 1) = r ( B f  +2, k + l) (10) 

where the superscript  emphasizes the Fibonacci- type recursion. Thus the terms 
in the independence  polynomials  o f  the corresponding dualists obey the relation: 

O(D f, k) + O(D~Y+,, k + l) = O(Df+2,  k + l) (1 l) 

(5) For  a set o f  b ranched  all-benzenoids,  Eqs. (10) and (1 l) still apply provided 
the set o f  {D}'s define a series o f  Fibonacci  graphs. Table 6, (Fig. 6), contains 
an example o f  {Df} 's  with three branched centres. The entries o f  Table 6 are 
resonant  sextet numbers  o f  the corresponding benzenoid  hydrocarbons  which 
are also independence  numbers  o f  the corresponding dualists. 

3. Conclusion 

The approach  presented here depends on identifying sets o f  Fibonacci  graphs 
and applying Fibonacci  recursion to obtain terms in their count ing polynomials .  
Thus any graph  might  in principle be regressed down to its leading Fibonacci  
graph. The method  offers an easy way of  obtaining matching (characteristic) 
polynomials  o f  potent ial ly very large graphs (trees). Since certain types o f  trees 
(Gutman  trees) are t ransformable  into benzenoid  hydrocarbons  we, also, have a 
feasible method  o f  comput ing  sextet polynomials  (and Kekul6 counts) o f  very 
large hydrocarbons .  

The concept  of  a nonadjacent  structure u p o n  which this paper  is focused, and 
which was in t roduced by Hosoya  [3, 4] into the chemical literature has its origins 
in bond  eigenfunctions in relation to spin theory [22]. Such a nonadjacent  funct ion 
was symbolised by O(G, k) in the present work and corresponds  to a recently 
defined topological  funct ion [23], called ~r(G), as the cardinali ty o f  the graph 
topo logy  of  G i.e. is equal to the number  o f  stable sets [23] o f  G. 
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